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We investigate the influence of rotational and vibrational energy relaxation on the
stability of laminar boundary layers in supersonic flows by numerically solving the
linearized equations of motion for a flow in thermal non-equilibrium. We model air
as a mixture of nitrogen, oxygen and carbon dioxide, and derive accurate models
for the relaxation rates from published experimental data in the field of physical
chemistry. The influence of rotational relaxation is to dampen high-frequency insta-
bilities, consistent with the well known damping effect of rotational relaxation on
acoustical waves. The influence of rotational relaxation can be modelled with accept-
able accuracy through the use of the bulk-viscosity approximation when the bulk
viscosity is computed with a formula described herein. Vibrational relaxation affects
the growth of disturbances by changing the characteristics of the laminar mean flow.
The influence is strongest when the flow field contains a region at, or near, stagnation
conditions, followed by a rapid expansion, such as inside wind tunnels and around
bodies with a blunt leading edge, whereby the rapid expansion causes the internal
energy to freeze in a distribution out of equilibrium. For flows at Mach 4.5 and stag-
nation temperature of 1000 K, the total amplification exhibited by boundary-layer
disturbances over a sharp flat plate in wind-tunnel flows can reach a value that is fifty
times as high as the value computed under the assumption of thermal equilibrium.
The difference in amplification can be twice as high in the case of a blunt flat plate
at atmospheric flight conditions.

1. Introduction
The present investigation looks at the influence of molecular rotational and vi-

brational energy non-equilibrium (i.e. thermal relaxation processes) on the instability
of boundary layers in supersonic flows. The motivation for this work comes from
two sources. First, within the field of acoustics (e.g. Thompson 1988; Bauer 1965;
Bass et al. 1984) one can experimentally measure the increase in the damping rate of
high-frequency acoustical waves in polyatomic gases compared to that in monoatomic
gases, even at room temperature and pressure. The increase in damping rate is due to
a phase lag of the rotational and vibrational energy with respect to the translational
energy. Since in supersonic boundary layers the instabilities can reach frequencies
into the megaHertz range, it is natural to question if relaxation processes can affect
their growth. Secondly, at supersonic flow velocities the vibrational energy is essen-
tially frozen in the free stream and in equilibrium with translational energy at the
wall, leading to a boundary layer with characteristics different from those computed
with the assumption of thermal equilibrium. Thus, it is also natural to question if
vibrational relaxation processes influence the growth of boundary-layer instabilities.
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In a recent and carefully conducted experiment, Nerushev & Novopashin (1997)
have measured the influence of acoustical-wave attenuation on the location of
laminar–turbulent transition in pipe flow. Measurements were made of the fric-
tion factor in a pipe carrying a flow of either nitrogen or carbon monoxide. These
two gases were chosen because they have nearly identical thermodynamic and trans-
port properties, leading the authors to attribute the difference in acoustical-wave
attenuation to a difference in the rotational relaxation time in the two gases.† The
authors claim that the transition Reynolds number in nitrogen is about 10% lower
than that in carbon monoxide, although the data are a bit noisy. This result suggests
that rotational relaxation influences the growth of flow instabilities, even at room
temperature and pressure.

The influence of chemical, rather than thermal, non-equilibrium on boundary-
layer stability has been addressed in some recent studies (cf. Stuckert 1991; Stuckert
& Reed 1994; Chang, Vinh & Malik 1997; Hudson, Chokani & Candler 1997).
These numerical studies show that chemical non-equilibrium stabilizes the flow, in
agreement with the experimental measurements of Germain & Hornung (1997) made
over a slender sharp cone in hypersonic flow. Of most relevance is the study of
Hudson et al., which avoids the assumption of thermal equilibrium and includes the
effect of vibrational energy relaxation. The study shows that vibrational relaxation
has a slight stabilizing influence on second-mode instability waves in a boundary
layer created by a free-stream flow at Mach 10 and in thermal equilibrium.

All the above results suggest that relaxation processes have a general stabilizing
influence on boundary-layer stability. Our work shows that such a conclusion may
be correct with regard to rotational energy relaxation, but it is false for vibrational
energy relaxation. The basic reason for this difference stems from the widely different
relaxation rates of these two processes. The rotational energy of nitrogen and oxygen
relaxes to equilibrium within five to ten molecular collisions, cf. Gaydon & Hurle
(1963), and the associated rotational relaxation time is much shorter than the char-
acteristic time taken by a particle to travel a distance of the order of the thickness
of a boundary layer. Hence, rotational relaxation affects the oscillatory motion of
high-frequency instabilities, but not the steady laminar mean flow.

In contrast, the vibrational energy needs three to five orders of magnitude, cf.
Parker (1959), more collisions to relax to equilibrium than rotational energy, and
the associated Damköhler number Uτ/L, based on free-stream velocity U, body
dimensions L and relaxation time τ, is much greater than one for bodies in atmospheric
flight or in wind-tunnel flows. (The Damköhler number is essentially a Knudsen
number in which the time between collisions is replaced by the relaxation time.)
At first sight, then, it may seem appropriate to consider the vibrational energy as
frozen, and to hold its value constant over the entire flow field. However, such
an approximation is incorrect because the efficient energy exchange between the
vibrational modes of the gas molecules and the vibrational modes of the atomic
lattice of the wall material tends to rapidly bring the flow in the near wall region
into thermal equilibrium. The vibrational energy develops a boundary layer of its
own, which affects the overall characteristics of the laminar boundary layer, including
its stability. Furthermore, the free-stream value to which the vibrational temperature

† The authors quote Z rot = 2.3 for CO and Z rot = 6.0 for N2, which implies a lower bulk viscosity
value for CO in comparison to N2. However, the authors also quote a higher sound-damping
coefficient for CO and attribute the higher value to a correspondingly higher value of the bulk
viscosity of CO with respect to N2. This inconsistency is not clarified in their paper.
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Figure 1. Regions of equilibrium and non-equilibrium vibrational energies (a) in a wind tunnel and
(b) over a blunt body in free flight. Equilibrium regions are characterized by low flow velocities
and high temperatures, and include the supply chamber, the stagnation region, and the immediate
neighbourhood of a solid wall. Non-equilibrium flow is generated in regions having a rapid flow
expansion, such as the rapid expansion in the nozzle and around the blunt leading edge. The rapid
expansion freezes the vibrational energy at a level close to the stagnation temperature, leading to
non-equilibrium flow downstream.

asymptotes outside the boundary layer strongly depends on the upstream history of
the flow (see figure 1). In particular, the free-stream value depends on whether the
fluid particles come from a high-temperature region, such as the supply chamber
in supersonic wind tunnels and the stagnation region of blunt bodies, or from
a low-temperature region such as the free stream in flight conditions when only
weak oblique shocks are present. Herein, we show that in a flow at Mach 4.5 and
stagnation temperature of 1000 K, the total amplification exhibited by boundary-layer
disturbances over a sharp flat plate in wind-tunnel flows can reach a value that is fifty
times as high as the value computed under the assumption of thermal equilibrium,
while the difference in amplification can be twice as high in the case of a blunt flat
plate at atmospheric flight conditions.

The influence of thermal relaxation processes on flow stability also depends on the
degree to which the rotational and vibrational energies are excited. Rotational energy
is fully excited above 50 K, hence it is always activated in flows around vehicles in
atmospheric flight. In contrast, the characteristic vibrational temperatures of nitrogen
and oxygen are above 2000 K, and the contribution of the vibrational energy mode
to the total internal energy exceeds 10% in oxygen, air, and nitrogen at temperatures
above 500, 700 and 800 K, respectively. Below these temperatures, the state of the
vibrational energy, whether in equilibrium or relaxing, has little influence on stability.
Consequently, the vibrational energy relaxation process becomes important when the
stagnation temperature in the flow surpasses about 800 K.

The first part of this paper deals with the physical modelling of rotational and
vibrational relaxation. We derive models for the relaxation rates from published
experimental data in the field of physical chemistry. The models are valid in the
temperature range of 220 to 1400 K, and the model for rotational relaxation gives
rise to a bulk-viscosity coefficient with a temperature dependence that differs from
that used in previous stability analyses.

In the second part of this paper, which presents the influence of rotational relaxation
on the amplification of second-mode instabilities, and the third part, which presents the
influence of vibrational relaxation of both first-mode and second-mode instabilities,
we focus mainly on a flow at Mach number of 4.5 and at the atmospheric conditions
existing at 12 000 m altitude. This flow is chosen because its stagnation temperature
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of 1041 K is high enough to significantly excite the vibrational energy of nitrogen
and oxygen, but is too low to cause any appreciable dissociation.

In order to limit the length of this manuscript, details that are not central to the
disclosure of the main results are omitted, including equations that can be derived
using known and documented steps. For a more lengthy and complete presentation
the reader is referred to Bertolotti (1997).

2. Physical modelling
We use the equation of Landau & Teller (1936) to model the relaxation process of

both rotational and vibrational energy,

d e∗

d t
=

1

τ

(
ē− e∗

)
, (2.1)

where e∗ denotes the actual internal energy contained in the excited state and ē
denotes the energy that would be contained in the excited state if the gas were in
equilibrium. The relaxation time τ controls the rate at which the energy departure
from equilibrium relaxes to its initial value.

Although the Landau–Teller equation is considered an accurate model for relax-
ation processes when only the first few quantum states are significantly populated (for
example, when the harmonic oscillator model for vibrational motion is valid), we can
only assume that this equation is an accurate model for rotational relaxation since
many rotational quantum states are populated at room temperature. Furthermore,
the description of the excited energy state by a single scalar, as appears in (2.1),
implies the existence of a Boltzmann distribution in energy. Studies (Raff & Winter
1968) employing the master equation to model energy transitions between individual
rotational quantum levels show that the use of a single rotational relaxation time
is a gross oversimplification in the case of hydrogen. Hydrogen is, of course, an
exceptional gas, whose small molecular moment of inertia produces relaxation times
two orders of magnitude higher than those of nitrogen and oxygen. For nitrogen and
oxygen, experiments on rotational relaxation in a shock wave at Mach 7.0 (Robben
& Talbot 1966) and in a jet of pure nitrogen gas (Yamazaki, Masahiro & Yoshiyasu
1981) and of a helium and nitrogen mixture (Belikov & Sharafutdinov 1995) expand-
ing into quasi-vacuum have also measured a rotational energy distribution that is
non-Boltzmann. However, these experiments also show that the energy distribution
can be closely approximated by two Boltzmann distributions, one for the lower (e.g.
50) rotational quantum states and one for the higher ones, each distribution being
characterized by a different temperature. At the translational temperatures below
1400 K that are of interest here, practically all of the rotational energy is contained
in the lower quantum states, and, thus, the use of a single rotational temperature and
the Landau–Teller equation for rotational relaxation is adequate for our purposes.

2.1. The rotational relaxation rates

The rotational relaxation time τrot can be expressed as the product of the mean time
between molecular collisions C and the number of molecular collisions Z rot needed
for relaxation,

τrot = C Z rot. (2.2)

Estimates of Z rot inferred from laboratory measurements are sufficiently consistent
to extract an average, representative value. For nitrogen, absorption measurements
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Figure 2. Comparison of the relaxation time τ given by theory and experiment for pure nitrogen
at one atmosphere.

of ultrasonic sound have yielded values of 5.26 collisions (Greenspan 1959) and 5.5
collisions (Andersen & Horning 1959), while shock-wave measurements using the
electron-beam fluorescence technique (Robben & Talbot 1966) have yielded Z rot = 5,
and recovery-factor measurements (O’Neal & Brokaw 1963) have yielded Z rot = 7.3.
For oxygen, ultrasonic measurements have yielded 13 collisions (Connor 1958) and
4.09 collisions (Greenspan 1959), while the recovery factor measurements have yielded
12 collisions (O’Neal & Brokaw 1963) In our work we use Z rot = 5.5 for nitrogen
in a nitrogen bath, and Z rot = 10 for oxygen in an oxygen bath at a translational
temperature of 300 K.

Theoretical models based on quantum theory (Brout 1954), on classical kinetic
theory (Parker 1959), and numerical solutions to the master equation (Raff & Winter
1969) predict an increase of the rotational collision number Z rot with temperature.
Because these ab initio quantum-mechanical calculations are approximate in nature,
and because the scope of the present work is focused on macro-mechanical gas
behaviour, we use herein the following empirical dependence for Z rot(T ), which we
construct from a fit of the available experimental data:

Z rot(T ) = Z rot

0 exp

[
T − 293.3

20 ε/k

]
, (2.3)

where T is the translational temperature, Z rot

0 is the collision number measured at
room temperature, and ε/k is the ratio of the Lennard–Jones potential-well depth to
Boltzmann constant. The relaxation time computed using (2.3) and using C computed
with the Lennard–Jones potential is compared with experimental data in figure 2.
Also shown in this figure are the results obtained with the Lennard–Jones or a rigid
sphere model together with the constant value of Z rot = Z rot

0 .
From (2.3) we can obtain an expression for the bulk viscosity µv using the known

relationship between µv and τ (e.g. Clarke & McChesney 1964; Pierce 1981; Vincenti
& Kruger 1965). The bulk viscosity is not a physical property of a gas, but rather,
an approximation designed to simulate the effect of thermal relaxation when the
governing equations are cast in terms of a single temperature. The bulk viscosity also
approximates the effect of long-range intermolecular forces in high density gases and
in fluids, but this aspect is not relevant here. The approximation is based on the
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assumption that the time scale of the macroscopic gas motion (i.e. the flow velocity)
is significantly longer than the relaxation time of the molecular internal degree of
freedom.

The first investigator to have included the bulk viscosity in the boundary-layer
stability equations seems to have been Mack (1965). Mack chose a constant value of
µv/µ = 0.8, which is higher than the 0.6 reported for air at room temperature (e.g.
Thompson 1988). This difference in value may indicate that Mack chose to model
air at a higher temperature, as we show below. Subsequent investigators have either
used Mack’s value or have invoked Stokes hypothesis, setting the value to zero. Our
expression for the bulk viscosity is accurate over a temperature range from 200 to
1400 K, and offers an alternative choice.

Below 1400 K the vibrational energy relaxation is much slower than that of
the rotational energy, so the rotational energy contribution to the bulk viscosity is
dominant and the vibrational energy contribution is herein neglected. Noting that the
factor ε/k in (2.3) is about 97 K for air, 92 K for nitrogen and 113 K for oxygen,
we can simply set this factor equal to the constant 97 K. This leads to the following
expression for the bulk viscosity, valid for air, nitrogen and oxygen:

µv(T )

µ(T )
=

(
µv

µ

)
T=293.3K

exp

[
T − 293.3

1940

]
, (2.4)

where T is in Kelvin. This expression yields a ratio µv/µ = 0.8 at 1000 K, which
agrees with Mack’s value. More generally, the expression yields a ratio µv/µ that
varies from 0.57 to 1 within the temperature range of 200 to 1200 K.

2.2. The vibrational relaxation rates

The vibrational relaxation time for pure nitrogen and pure oxygen at standard pressure
and temperature is about 1 s and 0.1 s, respectively. Carbon dioxide, on the other
hand, has vibrational relaxation times in the order of 10−5 s at the same conditions.
Furthermore, the characteristic vibrational temperature of nitrogen, T vib

N2
= 3354 K,

and of the asymmetric stretching mode of carbon dioxide, T vib

CO2
= 3380 K, have

almost the same value. These two facts combine to produce a strong sensitivity of
the vibrational relaxation time of nitrogen to the presence of small concentrations of
carbon dioxide. The reason behind this catalytic effect lies in a resonant vibrational
energy exchange (V-V transfer) that occurs with much higher probability at each
molecular collision than a vibrational-translational energy (V-T) transfer: the nitrogen
exchanges vibrational energy with carbon dioxide at almost every collision, and the
carbon dioxide then relaxes with a (V-T) exchange at its normal fast rate.

In Bertolotti (1997) a model is derived for the relaxation rates of nitrogen and
oxygen in the presence of carbon dioxide and water vapour by considering 17 reactions
involving the first vibrational state of nitrogen and oxygen and the symmetric stretch,
asymmetric stretch and bending modes of carbon dioxide and water vapour, plus the
rotational energy of water vapour. The relaxation problem is governed by a coupled
system of first-order differential equations, as described by Herzfeld & Litovitz (1959).
The relaxation rates appear as the eigenvalues of the system. For a generic mixture,
the eigenvalues cannot be associated with the relaxation rates of any one particular
component alone (Shuler 1959); however, due to the short relaxation times of carbon
dioxide and water vapour in comparison to those of nitrogen and oxygen, the
relaxation process proceeds on two widely different time scales, one governing the
relaxation of CO2 and H2O in which N2 and O2 play a minor role, the other governing
the relaxation of N2 and O2 in which carbon dioxide and water vapour play the role
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ReferencesC1 C2

Reaction (s atm)−1 (K1/3) For C1 For C2

N∗2 + N2 (k010 
 k001) N2 + N2 1 −140 EBS GH
N∗2 + O2 (k020 
 k002) N2 + O2 1 −140 EBS B97
N∗2 + CO2 (k030 
 k003) N2 + CO2 1 −140 EBS B97
N∗2 + CO2 (k060 
 k006) N2 + CO∗2 (ν3) 1.4× 107 +30 Pack Pack

O∗2 + N2 (k110 
 k101) O2 + N2 40 −105 EBS B97
O∗2 + O2 (k120 
 k102) O2 + O2 63 −105 Monk VK
O∗2 + CO2 (k130 
 k103) O2 + CO∗2 (ν2) 3.0× 105 −67 EBS B97

CO∗2(ν3) + N2 (k310 
 k301) CO∗2(ν2) + N2 7.0× 104 −60 EBS B97
CO∗2(ν3) + O2 (k320 
 k302) CO∗2(ν2) + O∗2 7.5× 104 −60 EBS RG
CO∗2(ν3) + CO2 (k330 
 k303) CO∗2(ν2) + CO2 1.5× 105 +5 EBS B97

Table 1. Reaction-rate constants for various energy exchanges. The stars indicate a molecule with
the first vibrational state excited. The author names or initials in the References columns are: EBS,
Evans, Bass & Sutherland (1971); Pack (1980); Monk (1969); GH, Gaydon & Hurle (1963); B97,
Bertolotti (1997); VK, Vincenti & Kruger (1965); RG, Rosser & Gerry (1969).

of a catalyst. Consequently, two eigenvalues can be associated with the relaxation
of nitrogen and oxygen in our particular gas mixture. These eigenvalues, plus the
associated eigenvectors, lead to the following relaxation equations for nitrogen and
oxygen:

1

τN2

= k010Z + k020Y + +(k030 + k060)X − k006Zx10, (2.5a)

1

τO2

= k110Z + k120Y + (k130 + k302)X − k320Yx20, (2.5b)

where

a = (k220 + k005)Z + (k210 + k105)Y + k304ξX,

d = (k310 + k006)Z + k320Y + k330X,

f = k060X, h = k302ξX,

x10 = (af)/(ad), x20 = (ah)/(ad),

and where Z, Y ,X are the molar concentrations of nitrogen, oxygen, and carbon
dioxide at the ground state, and the corresponding lower case letters are the concen-
trations in the vibrationally excited state. The reaction rate constants k are discussed
below. The variable ξ = 2 exp[−960/T ] is the percentage of CO2 atoms with the
doubly-degenerate bending mode excited, and arises from the assumption that this
mode is in equilibrium (Henderson et al. 1968). We have omitted the terms due to
water vapour since the trace amount of water vapour at the selected flow conditions
under consideration here is negligible. The reaction rate constants k have a tempera-
ture dependency of the form (e.g. Herzfeld & Litovitz 1959; Vincenti & Kruger 1965;
Anderson 1989)

k = C1 exp
[
C2

(
T−1/3 − 300−1/3

)]
, (2.6)

where T is the translational temperature in Kelvin. The values of the coefficients C1

and C2 for each reaction are shown in table 1.
The values of C1 were either taken directly from, or computed from the experimental
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Figure 3. Product of vibrational relaxation time τ and pressure p for nitrogen and oxygen as
function of temperature: (a) air model composed of 0.77783 N2 and 0.22217 O2 mole fractions (b)
air model including 0.0003 mole fraction of CO2, (c) air model including 1% mass fractions of CO2

and H2O.

data given within the references listed in the table. Because many of the experimental
measurements were conducted at room temperature, the value of the constant C2 for
some of the reactions listed above was, unfortunately, not available within the survey
of publications done by the author. To obtain an estimate of the value of C2 for V-T
reactions involving at least one bi-atomic molecule and not involving water vapour,
we use the linear dependence of C2 on the energy ∆ε exchanged in the reaction.
This linear dependence is predicted by the model of Herzfeld & Litovitz (1959) based
on the theory of Landau & Teller (1936). The values of C2 in table 1 associated
with the reference B97 have been obtained with this linear relation. The relaxation
time τN2

computed with the reaction rates of table 1 are in good agreement with
the experimental data of Henderson et al. (1968) for a set of mixtures with different
concentrations of nitrogen, carbon dioxide and water vapour at a temperature of
450 K.

We model dry air as a composition of 0.7776 (mole fraction) nitrogen, 0.2221
oxygen, and 0.0003 carbon dioxide. The concentration of carbon dioxide agrees with
current atmospheric levels. In figure 3 we show the relaxation times computed by
our model for the temperature range of 200 to 1900 K. The strong effect of small
quantities of carbon dioxide on the relaxation of nitrogen can be seen by comparing
lines (a) and (b), whose corresponding gas mixtures differ from each other by only 300
parts per million of carbon dioxide. In addition, line (c) shows the results for a ‘wet’
mixture having a high concentration of carbon dioxide and water vapour. The strong
sensitivity of τO2

to water vapour comes from a second resonant energy exchange
involving the bending mode of H2O (2295 K) and the vibrational mode of oxygen
(2273 K). We have included this particular wet gas mixture in the figure to highlight
the synergistic influence of CO2 and H2O on the relaxation rates of nitrogen and
oxygen, although this particular mixture is more representative of the flow conditions
around a turbine blade within a jet engine than those around a wing in atmospheric
flight.

3. The governing equations
The vibrational energy of carbon dioxide is assumed to be in equilibrium, in view

of the rapid relaxation rates shown in table 1. The rotational energy is also assumed
to be in equilibrium since the concentration of this species is small. This leaves the
density ρ, velocity v, pressure p, translational temperature T , and the rotational and
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vibrational temperatures of nitrogen and oxygen, T rot

N2
T rot

O2
T vib

N2
T vib

O2
, as independent

variables.
The Navier–Stokes equations are changed in essentially two ways to incorporate

thermal non-equilibrium. First, the relaxation equations for the vibrational and for
the rotational temperatures of nitrogen and oxygen are introduced. Secondly, the
heat-flux vector is extended to include the diffusion of vibrational and rotational
energies that takes place in the presence of the corresponding temperature gradients.

The Eulerian form of the relaxation equation (2.1), for either rotational or vibra-
tional energy, takes the form

ρ
De∗i
Dt

+
ρ

τ
(e∗i − ēi) = −div[q∗i ], (3.1)

where e∗i , ēi and τ have the same meaning as in (2.1), and q∗i represents the flux of
non-equilibrium internal energy of species i. An approximate expression for the energy
flux as a product of the gradients in the energy and the viscosity can be obtained
from the kinetic theory of gases (e.g. Hirschfelder, Curtiss & Bird 1954). The gradient
in energy can itself be expressed in terms of the specific heat at constant volume
and the temperature, leading to a heat conductivity coefficient that is the product of
viscosity and specific heat. The total heat flux can then be expressed in the form

qi = −κtrn

i ∇T − κrot

i ∇T rot

i − κvib

i ∇T vib

i (3.2)

where κtrn

i , κrot

i and κvib

i are the heat-conductivity coefficients due to the translational
energy, rotational energy and vibrational energy, respectively, of species i. Eucken’s
correction (e.g. Anderson 1989; Park 1990) to the heat conductivity coefficients takes
the form

κtrn

i = l trni µiC
trn

v,i , κrot

i = lrot

i µiC
rot

v,i , κvib

i = lvib

i µiC
vib

v,i (3.3a–c)

with l trni = 5/2, in analogy with mono-atomic gases, and lrot

i = lvib

i = 1, empirically. The
modified Eucken approximation sets 1/lrot

i equal to the Schmidt number, which has a
value of about 5/6 for most intermolecular forces, and undergoes a negligible change
with temperature. A more accurate expression for the conductivity coefficients has
been derived by Mason & Monchick (1962) using an approximate solution to the semi-
classical theory of Wang-Chang & Uhlenbeck (1951). This expression incorporates
the effects of inelastic collisions through the inclusion of the relaxation time. If one
neglects the very weak dependence of the Schmidt number with temperature, the
formula of Mason & Monchick has the form

l trni =
5

2

{
1− 26

47

(
C rot

v,i

Ri Z
rot

i

+
C vib

v,i

Ri Z
vib

i

)}
, (3.4a)

lrot

i =
6

5
+

1

Z rot

i

, (3.4b)

lvib

i =
6

5
+

1

Z vib

i

, (3.4c)

where Z rot

i is the rotational collision number, Z vib

i the vibrational collision number,
and Ri is the gas constant for species i. We apply equation (3.2) to a single species
in the gas mixture, and we obtain values for the conductivity of the mixture itself
by applying Wilke’s rule (Wilke 1950). This rule is derived from the rigorous kinetic
theorry of Chapman and Enskog using simplifications for various collision integrals.
We also apply Wilke’s rule to calculate the mixture viscosity using species viscosities
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given by Sutherland’s model based on constants obtained by a best-fit to experimental
data (Bertolotti 1997).

The inclusion of the relaxation equations and of the heat-flux expressions into
the Navier–Stokes equations leads to the governing equations. These equations are
herein presented in a form that includes the bulk viscosity, µv, even though the
rotational energy is treated as an independent variable. We include the bulk viscosity
for the convenience of displaying a single set of general governing equations. It is
understood that when the rotational energy is treated as an independent variable, the
bulk viscosity is set to zero. For some of our calculations we have reduced the number
of independent variables by using the bulk viscosity to approximate the effects of
rotational relaxation. In this case the governing equations are obtained by letting
T denote the translational and rotational temperature, specifying µv(T ), and setting
T rot equal to T . The continuity equation, momentum equation, energy equation, the
equation for enthalpy, the equation of state, the heat-conduction equation, and the
relaxation equations, are, in order,

∂ρ

∂t
+ div[ρv] = 0, (3.5a)

ρ
Dv

Dt
= −∇p+ 2div

[
µD + (µv − 2

3
µ)tr[D]I

]
, (3.5b)

ρ
Dh

Dt
= −div[q] +

Dp

Dt
+ (µv − 2

3
µ)(div[v])2 + 2µtr[DD], (3.5c)

h = C trn

p T +
∑
i

ci(e
rot

i + evib

i ), (3.5d)

p = ρRmix T , (3.5e)

q = −κtrn∇T −
∑
i

fi(κ
rot

i ∇T rot

i + κvib

i ∇T vib

i ), (3.5f)

ρ
D

Dt
erot

i +
ρ

τrot

i

(
erot

i − ērot

i

)
= div[κrot

i ∇T rot

i ], (3.5g)

ρ
D

Dt
evib

i +
ρ

τvib

i

(
evib

i − ēvib

i

)
= div[κvib

i ∇T vib

i ], (3.5h)

where

2D = ∇v + (∇v)T

is the stretching tensor, I is the identity tensor, ci are the mass fractions of the species,
Rmix is the gas constant for the mixture, and fi are the coefficients computed with
Wilke’s formula applied to thermal conductivity. The viscosity µ and the conductivities
κtrn and κrot

i are functions of the translational temperature T only. The vibrational
energies at equilibrium ērot

i and ēvib

i are given by the classical equilibrium expressions
from statistical thermodynamics (e.g. Vincenti & Kruger 1965) evaluated at the
translational temperature.

The velocity v satisfies the boundary conditions of no-slip at the wall, and a
prescribed value in the free stream. The translational, rotational and vibrational
temperatures also match a prescribed value in the free stream. At the wall we
assume that there is no net heat transfer. This assumption implies that the body
has been given sufficient time to come into thermal equilibrium with the flow field,
as is the case, for example, for a vehicle at cruising conditions. Furthermore, both
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the translational and rotational temperatures are assumed to be in equilibrium with
each other near the wall due to the low velocities there. Thus, the translational and
rotational temperatures satisfy the Neumann condition

∂T

∂y
= 0,

∂T rot

∂y
= 0. (3.6)

3.1. The boundary conditions for vibrational temperature

The flux of vibrational energy at the wall depends on the efficiency of exchange
between the vibrational energy of the molecules and the energy contained in the
vibrational motions of the atomic lattice of the surface material. At each collision
with the wall, a molecule has a probability facc of an exchange of kT V

i energy quanta
with the wall. The net transfer (averaged over many collisions) is proportional to
the difference in the average energy levels of the molecules and the wall. This flux is
balanced by the conduction of translational heat away from the wall, which yields
the desired wall boundary condition for T V

i ,

κV

i

∂T V

i

∂y
+ faccp

(
2Ri
πT

)1/2

(T − T V

i ) = 0. (3.7)

The factor facc is proportional to the accommodation coefficient αacc used in the
study of heat convection in rarefied gases (Saxena & Joshi 1989). More precisely, our
factor facc equals the accommodation coefficient αvib

acc
for vibrational energy only. Vines

(see Saxena & Joshi 1989) proposed a subdivision of the total αacc into translational,
rotational and vibrational portions based on the relative contribution of each energy
mode to the total thermal energy,

(C tot

v + Ri/2)αacc = αtrn

acc
(C trn

v + Ri/2) + αrot

acc
C rot

v + αvib

acc
C vib

v . (3.8)

With this partition, αvib

acc
contributes from 0% to about 20% to the overall value of αacc

for a diatomic molecule, depending on temperature. Furthermore, the total value of
αacc for nitrogen is typically between 0.3 and 1, as can be seen in the large collection of
experimentally measured values of αacc for different gases and surfaces reported in Sax-
ena & Joshi (1989). Thus, Vines’ suggestion yields a value of αvib

acc
between 0.06 and 0.2.

Many of the experimentally measured accommodation coefficients reported in the
literature have been computed from the overall heat flux and, thus, the measurements
do not distinguish between the amount of energy in the translational and the internal
degrees of freedom in the gas molecules leaving the surface. An investigation (Asscher
et al. 1983), however, employing laser light to probe the vibrational energy of nitric
oxide molecules scattered from a platinum crystal surface (111)†, has shown accom-
modation coefficients for vibrational energy that vary between 0.9 and 0.75 in the
surface temperature range of 400 to 1200 K. These results have been obtained in care-
fully controlled experimental conditions in order to reduce the influence of unwanted
phenomena (Somorjai 1994) including contamination of the surface through the ad-
sorption of ambient gas molecules, terraces at the atomic level, surface absorption of
gas molecules, and catalysed molecular dissociation. We must be careful, therefore, in
giving an over-broad generality to these results, especially when extending the results
to the ultra rough and imperfect (at the atomic level), weather-beaten, contaminated,
oxidized, or even painted, metallic surfaces used in ‘real life’ engineering applications
exposed to gases at pressures many orders of magnitude greater than those of the

† These indices indicate the orientation of the surface-plane with respect to the crystal lattice.
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ultra-high vacuum conditions used in the experiment. One can only make an educated
guess for the value of facc in equation (3.7). For simplicity, we follow Vire’s suggestion
and set facc equal to Cvib

v /C
tot

v , which produces a value that lies in the reasonable range
of 0 to 0.2. We have increased the value to 1 in some computations to measure
the sensitivity of the overall boundary-layer stability problem to this parameter and,
fortunately, we have found the sensitivity to be weak.

3.2. The linearized governing equations

The linear equations governing the evolution of small-amplitude perturbations are
constructed following the standard approach for linear stability analysis. Due to the
many terms that make up these equations, these lengthy equations will not be reported
here. A full listing is given in Bertolotti (1997). The streamwise derivatives of the
mean laminar flow are neglected and the small-amplitude perturbations are expressed
in normal-mode form to arrive at essentially Orr–Sommerfeld type equations that
incorporate the relaxation equations. The spanwise wavenumber β and the frequency
ω of the normal-mode ansatz remain constant as the wave is convected downstream,
while the complex streamwise wavenumber γ+ iα incorporates the growth rate γ and
streamwise wavenumber α.

We neglect the weak spatial growth of the mean flow and use governing equations
of Orr–Sommerfeld type mainly to facilitate comparisons with the numerous results
published in the literature. The effect of the streamwise derivatives of the mean flow
on the stability of the disturbances can be studied, for example, with the parabolized
stability equations (Bertolotti, Herbert & Spalart 1992; Herbert 1997) but these effects
are not central to our main interest.

The stability equations are solved numerically employing a spectral-multi-domain
discretization in the wall-normal coordinate. In order to eliminate the possibility
of our computations suffering from under-resolution, we have employed a total of
200 Chebyschev polynomials per variable, distributed over 10 domains covering the
region extending from the wall to about 15 (or more) boundary-layer heights. In
routine calculations assuming thermal equilibrium, half this number of Chebyschev
polynomials already provides a fully converged solution.

A successful code validation was performed by comparing the growth rates obtained
by multiplying the relaxation rates by 10−8 to the growth rates computed with an
independent code that used thermal equilibrium (i.e. five independent variables). As a
further test, we used our code to calculate the attenuation of planar sound waves in
quiescent air. With only the rotational energies active, the code reproduced accurately
the experimentally measured attenuation of a planar wave in pure nitrogen at 300 K
and one atmosphere, as reported in Thompson (1988). A second study that included
water vapour in the air mixture and had the vibrational energies active, reproduced
accurately the measured sound-wave attenuation in air with 37% relative humidity
also reported in Thompson (1988). These comparisons are presented in Bertolotti
(1997).

4. Influence of rotational relaxation on boundary-layer stability
Herein we look at the effect of rotational relaxation on the growth rates of

instabilities in the compressible boundary layer over a thin flat plate aligned with the
flow. The plate is taken to be infinitely thin to avoid any strong leading-edge shocks,
and while in practice the growth of the boundary layer near the leading edge will
cause a weak oblique shock, we will avoid considering this phenomenon by taking
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Figure 4. Growth rates versus local Reynolds number for a second mode with frequency F = 150
(a), and F = 250 (b), at different free-stream temperatures. Solid line, non-equilibrium solution;
dashed-dotted line, equilibrium with µv = 0; dashed line, equilibrium with µv/µ = 0.6; symbols,
equilibrium with µv given by (2.4).

our free-stream quantities to be those found outside the boundary layer in the region
downstream of the leading edge. The free-stream density is chosen to be 0.31 kg m−3,
which corresponds to the density of the US standard atmosphere at 12 000 m of
altitude.

In the absence of wave-like oscillations in the flow, the most important parameter
for gauging the effect of relaxation is the ‘relaxation distance’ U∞/τ, which indicates
the spatial extent of the relaxation process at a given speed. At Mach 4.5 and free-
stream temperature of T∞ = 200 K, the longest rotational relaxation distance occurs
in the free stream and has a value of about 5 µm, which is a few percent of the
boundary-layer height, and which is much shorter than the size of the flying object.
Thus, we can assume that the laminar base flow has the translational and rotational
energies in equilibrium.

Figure 4 displays the growth rates at different free-stream temperatures for a
second-mode instability with β = 0 and non-dimensional frequency F = 150 or
F = 250. The non-dimensional frequency F is defined as

F = 106ω∗µ∞/(U
2
∞ρ∞), (4.1)

where ω∗/(2π) is in Hz. We adopt this conventional definition of non-dimensional
frequency, rather than one based on relaxation time, because the relaxation process
is of secondary magnitude in the overall kinematical processes that generate the
instabilities.

The growth rates are non-dimensionalized with the viscous length

δ(x) = [µ∞x/(ρ∞U∞)]1/2 (4.2)

and are plotted as function of the local Reynolds number

R = (ρ∞U∞x/µ∞)1/2 (4.3)

based on δ(x) and free-stream velocity. This Reynolds number depends on the square
root of the local Cartesian or surface-oriented x-coordinate.

The damping effect of rotational relaxation can be clearly seen by comparing the
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maximum attained by the non-equilibrium solution, denoted by the solid line, and
the maximum obtained by the solution computed using the assumption of thermal
equilibrium, denoted by the dashed-dotted line. The damping increases with tem-
perature because the rotational relaxation time increases with temperature, causing
the product ωτrot to approach one. At ωτrot = 1 the dampening effect of rotational
relaxation is maximal. The dashed line shows the results obtained with a ther-
mal equilibrium formulation using the usual value for bulk viscosity given by the
temperature-independent ratio µv/µ = 0.6. This value is correct at room temperature,
but is not at higher temperatures, as discussed earlier. These stability results agree
with the non-equilibrium results at the coldest conditions, i.e those corresponding
to a free-stream temperature of T = 100 K, but disagree at higher temperatures.
Using, instead, a bulk viscosity defined by equation (2.4), the stability results closely
approach the accurate results given by the non-equilibrium formulation.

In figure 5 we display the phase and amplitude distribution of translational and
rotational temperatures for a second mode at frequency F = 250 at a location within
the amplified region. The phases of the vibrational temperatures of nitrogen and
oxygen are clearly different from the translational temperature at distances from the
wall below η = 4, where η is the classic Blasius variable. The distributions, on the
other hand, remain quite similar to each other. The phase difference is largest near
the wall due to the increase of rotational relaxation time that accompanies the higher
temperatures in this region. The fluid temperature is about 300 K in the free stream
and 900 K at the wall. The rotational relaxation times vary from 3.4×10−9 (5.3×10−9)
in the free stream to 2.7 × 10−8 (4.2 × 10−8) at the wall for nitrogen (oxygen). The
corresponding product of disturbance frequency and relaxation time, ωτ, varies from
0.05 (0.077) in the free stream to 0.40 (0.622) at the wall for nitrogen (oxygen). Clearly,
this ratio is order one near the wall.

5. Influence of vibrational relaxation
While rotational relaxation directly influences the growth rate of boundary-layer

disturbances by causing the rotational energy to lag behind the translational energy,
vibrational relaxation influences the boundary layer stability in an indirect way,
namely by changing the mean-flow properties in the boundary layer. The influence
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is strongest when the flow field contains a region at, or near, stagnation conditions,
followed by a rapid expansion, such as inside wind tunnels and around bodies with a
blunt leading edge, whereby the rapid expansion causes the internal energy to freeze
in a distribution out of equilibrium. We first compare the mean flow over a thin flat
plate in a wind-tunnel flow to that found in free flight and to that computed assuming
thermal equilibrium, followed by a comparison of the corresponding stability results.
We then turn to the mean flow over a blunt body in atmospheric flow, and to its
stability. In all these studies we employ the bulk-viscosity approximation discussed in
the previous section to remove the rotational temperatures as independent variables.

5.1. The mean flow over a thin flat plate

The supersonic flow in wind tunnels differs in one important way from that found in
free flight, namely the flow is initiated from a high-pressure, low-velocity, and high-
temperature reservoir. These conditions generate thermal equilibrium in the chamber
leading to the nozzle, but once the flow enters the rapid expansion in the nozzle
itself, the drop in translational temperature and density, in conjunction with the slow
vibrational relaxation rates at low temperatures, freezes the vibrational energy at
essentially the value found in the reservoir. The resulting flow has the same total
internal energy and stagnation temperature† as the flow in free flight that one wishes
to simulate, but has a widely different partition of the total internal energy – the wind-
tunnel flow (in the free stream) is colder in the translational temperature, and much
hotter in the vibrational temperature. This non-equilibrium flow produces a laminar
boundary layer at the model’s surface that has different stability characteristics to
either the boundary layer found in free flight or computed using the assumption of
thermal equilibrium.

To simulate the wind-tunnel flows we set the vibrational temperature of nitrogen
and oxygen in the free stream equal to the stagnation temperature. The translational
temperature is then computed by subtracting the vibrational energy from the total
internal energy. On the other hand, to simulate the free-flight conditions we set the
vibrational temperatures in the free stream equal to the translational temperature.
The total internal energy (i.e. the stagnation temperature) has the same value in the
wind-tunnel and the free-stream cases, hence these two flows are indistinguishable
from one another under the assumption of thermal equilibrium. That is, both these
flows have equal stagnation temperature, free-stream density, and free-stream velocity,
and can be differentiated from one another in the free stream only by the distribution
of energy in the internal degrees of freedom.

For reference quantities, we chose the free-stream density ρ = 0.31 kg m−3, and
equilibrium temperature T∞ = 216 K that correspond to the values found in the
US standard atmosphere at an altitude of 14 000 m. The Mach number, based on
equilibrium conditions, is chosen as M = 4.5, yielding a free-stream velocity of
U∞ = 1327 m s−1. The specific heat Cp at equilibrium equals 1007 J kg−1 K. Since
we use equilibrium quantities for non-dimentionalization, the free-stream values at
non-equilibrium conditions do not asymptote to one.

For the equilibrium calculations we employ the well-known similarity solution
for the boundary-layer flow (e.g. White 1974). For the non-equilibrium calculations
we solve the boundary-layer equations derived from equations (3.5a)–(3.5h) using
Prandtl’s formulation. These equations, which form the first-order problem in a

† A wall-temperature probe is also insensitive to the non-equilibrium conditions because the
efficient exchange of vibrational energy between the gas and the surface drives the near-wall flow
towards equilibrium.
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Quantity Wind tunnel Free flight Equilibrium

Stagnation temperature (K) 1041.2 1041.2 1041.2
T wall 4.04 4.33 4.20
Ty wall 0.0 0.0 0.0
T edge 0.772 1.0 1.0
T vib
N2

edge 4.82 1.0 1.0
T vib
O2

edge 4.82 1.0 1.0
Density edge 1.30 1.0 1.0
Viscosity edge 0.798 1.0 1.0
Mach number edge 5.1 4.5 4.5
τvib
N2

edge (s) 0.35355 0.1383 0
τvib
O2

edge (s) 0.40104 0.1331 0
τvib
N2

wall (s) 1.65× 10−3 1.22× 10−3 0
τvib
O2

wall (s) 7.74× 10−4 5.89× 10−4 0

Table 2. Flow properties at R = 1000 for a thin, flat plate. The Mach number and other properties
computed from stagnation values are equal in the three flows.

matched-asymptotic expansion procedure, are of parabolic character in x and their
solution cannot be started from the infinitely sharp leading edge since the equations
are singular there. Consequently, the equations are numerically integrated downstream
starting at a selected initial location, which we take to be R = 200. This particuar
location lies sufficiently upstream of the instability region. The initial conditions
at R = 200 are computed using the self-similar equations for density, velocity,
translational temperature, and vibrational temperatures. Using self-similar equations
to compute the initial conditions is equivalent to neglecting the small amount of
relaxation that takes place in the region between the leading edge and the initial
location. The extent of this region is small compared to the extent of the region of
instability, and computations made by starting at R = 200 and R = 300 show that by
R = 600 the differences in the translational and vibrational temperature profiles are
negligible (Bertolotti 1997).

To help compare the characteristics of the wind-tunnel flow with those of the
free-flight case and those obtained with the assumption of equilibrium, we present in
table 2 the free-stream and wall values of selected quantities.

Figure 6 displays the translational temperature profiles and the N2 and O2 vibra-
tional temperature profiles at various streamwise locations, for both the free-flight
case and the wind-tunnel case. The Cartesian wall-normal coordinate y is normalized
with the (constant) Blasius length δ computed at the location R = 300 in order to
display the thickening of the boundary layer with streamwise distance.

The main difference between the wind-tunnel case and the free-flight case lies
in the free-stream values of the translational and vibrational temperatures. In the
free-flight case these temperatures are in equilibrium, but in the wind-tunnel case
the vibrational temperatures are frozen at the stagnation temperature, causing the
translational temperature to asymptote to 0.772, rather than one, to counter-balance
the large amount of energy stored in the vibrational modes. At the wall, the flow
is out of equilibrium at the most upstream location shown but rapidly approaches
equilibrium as the streamwise coordinate is increased. In particular, by R = 664 the
translational and vibrational temperatures at the wall reach thermal equilibrium, and
remain in equilibrium thereafter. Doubling the value of the accommodation coefficient
facc in equation (3.7) has only a small influence on this development, showing that
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Figure 6. Translational temperature T , and vibrational temperature of N2 and O2 over a flat plate
in free-flight and in wind-tunnel conditions (M = 4.5, Tref = 216 K). The wall-normal Cartesian
coordinate y equals η at R = 300). The grey region displays the boundary-layer height based on
99% u-velocity.

the relaxation process at the wall is not sensitively dependent on the value of facc. In
the region between the wall and the free stream, the vibrational temperature profile
is affected by two phenomena. First, the profile is drawn towards the translational
temperature profile under the action of relaxation, as can be seen in the plots of the
wind-tunnel case. Second, the profile is affected by the action of diffusion, as can be
seen in the plots for the free-flight case. The effect of diffusion is accentuated by the
weakening of the relaxation process away from the wall caused by the rapid decrease
of translational temperature. In particular, a large relaxation time τvib changes equation
(3.5h) to a diffusion dominated equation having a diffusion rate different from that
of translational temperature. The vibrational energy diffuses outwards as long as a
gradient exists in the vibrational energy itself and, consequently, the diffusion process
continues even outside the (classical) boundary layer. This phenomenon can be seen
in the plots for R = 1670 and R = 2862 in figure 6.

5.2. The stability results for the flat plate

The neutral stability diagram in figure 7 shows the domain in the frequency–Reynolds
number plane in which the flow is unstable, for both the case of wind-tunnel flows
and the case of thermal equilibrium. The areas shaded in grey, which denote stability,
and those in white, which denote instability are separated by the neutral curve, and
refer to the wind-tunnel conditions. The dashed curve, on the other hand, encloses
the unstable region computed under the assumption of thermal equilibrium. The non-
dimensional frequency F is defined in equation (4.1), and the local Reynolds number
R is defined in equation (4.3). The unstable region at lower frequencies corresponds
to Mack’s first unstable mode having a wave angle β/α of 60◦ at R = 300. This wave
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Figure 7. Neutral stability diagrams for a thin flat plate in a free stream at Mach 4.5 and temperature
of 216 K (Tstag = 1041 K). The wave angle for the first mode is 60◦ at R = 300. The wave angle for
the second mode is 0. The shaded area denotes stability, and the white area denotes instability for
the case of wind-tunnel conditions. The neutral curve computed with thermodynamic equilibrium
is shown as a dashed line. The numbers show the total amplification of the instability within
the unstable region at the frequency marked by the horizontal line. The numbers in parenthesis
correspond to the equilibrium calculation. Frequencies below F = 10 have not been computed.

angle is close to that of the most amplified disturbances, and, at each frequency, the
corresponding dimensional spanwise wavenumber β is held constant at downstream
positions (i.e. higher R), in agreement with the wave’s behaviour in free flight and
in wind tunnels. The upper unstable region corresponds to Mack’s second mode of
instability. For these modes, the spanwise wavenumber is zero.

The numbers shown at the downstream end of the instability domain in figure 7
denote the total amplification that a wave undergoes in the unstable region at
the frequency indicated by the horizontal line. The numbers in parenthesis show
the corresponding value obtained assuming thermal equilibrium. Both the first and
the second mode are significantly more amplified at the wind-tunnel conditions. In
particular, the non-equilibrium increases the total amplification of the second modes
up to a factor 4.5 higher than that given by thermal equilibrium. For low-frequency
first modes the increase in amplification is significantly larger, yielding an increase
of about 47 times at F = 35. This is the lowest frequency for which the mode’s
unstable region lies entirely within our computational domain, and we anticipate that
even greater differences in total amplification occur at lower frequencies. The log of
the amplification factor of 286 at F = 35 is 5.6, and even though this logarithmic
value is lower than the value of 9 normally used as the (empirical) value at which
transition occurs, the increase in amplification in wind-tunnel flows will undoubtedly
affect the location at which nonlinear interaction between modes occurs and, hence,
the location of laminar–turbulent transition itself.

The above results were obtained with a free-stream temperature representative of
atmospheric flight, but wind-tunnel experiments are often performed at colder free-
stream temperatures in order to achieve higher unit Reynolds numbers. These colder
flows have a stagnation temperature that is lower than the 1041 K used in the above
analysis, hence we cannot conclude that the strong influence of vibrational energy non-
equilibrium presented above is found in all wind-tunnel measurements. To highlight
this point, we repeat our calculations using the same density of 0.31 kg m−3 and
free-stream Mach number of M = 4.5, but with a free-stream temperature of 100 K
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Figure 9. Amplitude versus local Reynolds number for a first mode with frequency F = 35 for the
case of a thin flat plate in a flow at Mach 4.5 and free-stream temperature of 100 K (a) and 216
Kelvin (b). The corresponding stagnation temperatures are 502 K and 1041 K. The wave angle is
60◦ at R = 300.

in order to obtain a stagnation temperature of 502 K. The resulting neutral stability
plot is shown in figure 8. The stagnation temperature found in the reservoir upstream
of the wind-tunnel nozzle is not high enough to excite any significant amount of
vibrational energy, and, as expected, the difference between the non-equilibrium and
equilibrium neutral curves for the flat plate is much smaller than that at the higher
temperatures. The additional amplification at the wind-tunnel conditions is only 1.17
times greater than the value obtained using thermal equilibrium for the second mode
and 1.5 times for a first mode at F = 35. We feel that such differences might be
of interest from the academic point of view, but are small in comparison to the
influence of other phenomena not addressed in this work, such as the quality of the
flow and of the surface finish (i.e. receptivity). We observe, however, that the ultimate
objective of wind-tunnel measurements is not to duplicate results calculated using
the assumption of thermal equilibrium, but to duplicate the events that take place at
free-flight conditions, wherein the high stagnation temperatures are unavoidable.

Figures 9 and 10 compare the mode’s amplitude evolution with downstream distance
for flows having 100 and 216 K free-stream temperature. In addition to the wind-
tunnel and the equilibrium results, we also display the amplitudes obtained for the
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Figure 10. Amplitude versus local Reynolds number for a second mode with frequency F = 150
for the case of a thin flat plate in a flow at Mach 4.5 and free-stream temperature of 100 K (a) and
216 K (b). The corresponding stagnation temperatures are 502 K and 1041 K. The wave angle is 0.

free-flight conditions. We emphasize that an equilibrium flow outside the boundary
layer in free flight exists only because our plate is assumed to be very thin. In the
presence of leading-edge bluntness, the flow will be in non-equilibrium, as discussed
in the next section. The results for the atmospheric temperature of 100 K are included
only for completeness, since such a low temperature does not exist at any altitude.

The maximum amplification of the first-mode disturbances at F = 35 in wind-
tunnel conditions with a free-stream temperature of 216 K is much higher than the
corresponding amplification either in free flight or under the assumption of thermal
equilibrium. The increase in amplification dwarfs the increase in amplification due
to the ‘non-parallel’ effect (i.e. the growth of the boundary layer) that has been the
subject of numerous recent studies (for example Bertolotti & Herbert 1991; Chang
et al. 1991; Wendt, Simen & Hanifi 1995). At F = 35 the maximum amplification in
wind-tunnel conditions is 4.8 times higher than that computed with equilibrium. At
F = 50 this difference is 13.8 and for a second mode at F = 150 it is back to 4.5,
indicating that the influence of vibrational non-equilibrium is strong at all frequencies.

For the first-mode disturbances at F = 35 the free-flight conditions produce a
higher total amplification than that of equilibrium. For the second mode at F = 150
the effect is opposite. The lower amplification obtained for the infinitely thin flat plate
in ‘free-flight’ conditions as compared to equilibrium conditions is consistent with the
results reported by Hudson et al. (1997). These authors concluded that the effect of
thermal non-equilibrium is stabilizing, but now we see that this conclusion is valid
only for second-mode disturbances in the idealized case of an infinitely thin, shock-free
flat plate. The effect of non-equilibrium on first-mode disturbances is destabilizing,
and, more importantly, thermal non-equilibrium in either wind-tunnel conditions or
blunt-body flows in free flight is strongly destabilizing for all modes.

Figure 11 displays the streamwise velocity and the translational and vibrational
temperature profiles for the first-mode disturbance with F = 35 at a location within
the unstable region. The vibrational temperatures of the disturbance are smaller
than the translational ones, as one would expect from the slow relaxation times
for vibrational energy, but their amplitude is much larger than one would estimate
based on the relaxation times only. Part of the reason for the large amplitude value
is the effect of transport of vibrational energy through convection and diffusion,
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Figure 12. Temperatures at the edge of the boundary layer as function of arc-length along the
surface of the blunt plate.

combined with a strong variation of the mean-flow vibrational temperature across
the boundary layer. From the observation of the temperature profiles, we propose
that the destabilizing effect of thermal non-equilibrium in wind-tunnel flows is a
combination of both the colder translational temperature in the free stream, and of
non-equilibrium effects in the stability process itself.

5.3. Influence of vibrational relaxation in free flight

In this section we consider the case of a blunt, adiabatic, flat plate, with a 15 mm nose
radius, flying at Mach 4.5 at an altitude of 12 000 m. The inviscid, non-equilibrium
flow about the plate has been computed using a shock-capturing Euler code, known
as the τ-code, into which the thermal and chemical non-equilibrium processes have
been incorporated, Hannemann (1997). The plate length is 60 nose radii in order to
include the unstable boundary-layer region.

At the stagnation point the flow is either at, or close to, thermal equilibrium,
but as the flow accelerates past the leading edge the density and the translational
temperature rapidly drop, causing the vibrational energy of nitrogen and oxygen to
freeze. The rapid expansion behaves, effectively, like the nozzle in the wind-tunnel flow.
Thereafter, the relaxation rate of the vibrational temperature towards the translational
temperature occurs on a length scale that is much greater than the computed domain.

The frozen vibrational energy causes the translational temperature to drop below
the value computed with thermal equilibrium, making the boundary layer more
unstable. The freezing effect can be seen in figure 12 which shows the surface
values of translational and vibrational temperature computed with the Euler code.
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Figure 13. Iso-lines of translational temperature and vibrational temperature computed with the
non-equilibrium Euler code.

Blunt plate Thin plate Thin plate
(free flight) (wind tunnel) (free flight)

Trans. temperature (K) 432 166 216
Vib. temperature N2 (K) 946 1041 216
(Equil. temperature) (K) 454 216 216
Density kg m−3 0.18 0.31 0.31
Velocity m s−1 1156 1327 1327
Mach number (actual) 2.8 5.1 4.5
(Mach number equilibrium) 2.7 4.5 4.5

Table 3. Properties in the flow outside the boundary layer for the blunt plate at x/r = 50, and the
sharp, thin plate. The Mach number at equilibrium is the value obtained if the flow were allowed
to come into thermodynamic equilibrium.

In this and later figures the coordinate x is the surface arc-length measured from the
stagnation point, and x/r is the distance normalized with the leading edge radius.
The corresponding iso-contour lines of translational temperature and vibrational
temperature are shown in figure 13.

Before we discuss the destabilizing effect of the non-equilibrium process, we note
that bluntness also has a stabilizing effect on the flow, and this stabilizing effect can
dominate over the non-equilibrium effect in certain geometries. The stabilizing effect
is mainly due to two reasons. First, the properties at the edge of the boundary layer
on the blunt plate are quite different from the corresponding values on the thin plate.
Table 3 compares the edge values. The blunt leading edge almost doubles the free-
stream translational temperature, halves the Mach number, and halves the density,
while leaving the free-stream velocity about equal to the thin-plate case. The values
in this table were taken at x/r = 50, which lies near the end of our computational
domain, hence the effect of bluntness persists far enough downstream to affect the
unstable boundary-layer region.

Secondly, the translational temperature, velocity and density at the edge of the
boundary layer increase slowly with arc-length. The flow over the flat part of the
plate is, thus, slightly accelerated. As a measure of the acceleration, we compute the
local Hartree parameter βH (Q) = (x/Q)(dQ/dx) based on the streamwise velocity
(Q = U), the translational temperature (Q = T trn), and the vibrational temperature of
nitrogen (Q = T vib

N2
). The values are shown in figure 14. The value of βH (U) is about

0.03 over most of the plate’s length, and, in the incompressible limit, flows having this
value of βH are known to be more stable than the Blasius flow (for which βH = 0).
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Figure 14. Hartree parameters βH (Q) = (x/Q)dQ/dx based on streamwise velocity βH (U), trans-
lational temperature βH (T trn), and vibrational temperature βH (T vib

N2) at the edge of the boundary
layer.
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Figure 15. Laminar mean-flow profiles of translational and vibrational temperatures as function
of wall normal distance y non-dimensionalized with the nose radius (r = 15 mm), at streamwise
locations (a) x/r = 15 and (b) x/r = 38. The reference temperature is 216 K.

Thus, bluntness produces free-stream conditions at the edge of the boundary
layer that have a stabilizing effect on the boundary layer itself. Counteracting these
stabilizing effects of bluntness are at least two destabilizing effects that increase in
strength with increasing nose bluntness, namely the entropy layer instability and
thermal non-equilibrium. The first effect is not addressed in the present investigation
(see Dietz & Hein (1998)). Like in the flat-plate case previously addressed, the
destabilizing influence of vibrational energy relaxation stems from a modification of
the laminar mean flow. The computed boundary-layer temperature profiles at two
streamwise locations are shown in figure 15. The profiles resemble the profiles over
the thin plate in wind-tunnel conditions (see figure 6), in which the translational and
vibrational temperatures are in (or near) equilibrium at the wall, and reach widely
different values in the free stream.

The streamwise amplitude evolution for three first-mode waves (no second-mode
waves were found within the computed domain) with different frequency are shown
in figure 16. The spanwise wavelength has been chosen to maximize growth, and gives
wave angles (β/α) of about 60◦. The dashed lines show the results computed using
thermodynamic equilibrium. The destabilizing influence of non-equilibrium produces
a total amplification that is just about double that computed with thermal equilibrium.

This increase in total amplification could be relevant in the transition-reversal
phenomena. It has been observed in experiments (Ericsson 1988) that increasing
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Figure 16. Amplification curves versus arc-length along the surface of the blunt flat plate,
non-dimensionalized with the nose radius (15 mm), for the three first-mode waves with differ-
ent frequencies. The solid lines and the dashed lines show the non-equilibrium and the equilibrium
results, respectively.

bluntness first stabilizes the flow, pushing the onset of turbulence farther downstream,
but after a certain value, increasing the bluntness (i.e. the nose radius) causes the
transition onset to move upstream again. This phenomenon is referred to as transition
reversal, and lies outside the scope of the present work. Indeed, the effects of increasing
bluntness on transition could be due to a combination of phenomena not considered
herein, including, for example, the generation of longitudinal streaks in the boundary
layer due to turbulence in the outer flow. Entropy modes could also play a role. Our
study shows, nevertheless, that the generation of thermodynamic non-equilibrium is
one of the destabilizing effects of bluntness.

In view of the practically ubiquitous use of the thermal equilibrium model in
current stability investigations, the main conclusion to be drawn from our study
of the blunt flat plate is the significant discrepancy between non-equilibrium and
equilibrium solutions, as shown in figure 16. Our investigation has used the linearized
stability equations, thus has neglected the nonlinear phenomena that are necessary
to bring the flow into turbulence. However, based on the existing knowledge on the
sensitivity of the transition physics to the amplitude of the disturbances acquired in
incompressible flows (e.g. Herbert 1988) we can anticipate that the added amplification
caused by thermal non-equilibrium could have a strong influence on the transition
location by either anticipating the location of nonlinear mode interactions (here mode
is synonymous with ‘disturbance’), or, in limiting cases, by causing transition where
equilibrium results would predict a laminar flow.

6. Conclusions
The influence of rotational and vibrational energy relaxation on the stability

of boundary layers in supersonic flows is investigated using the full thermal non-
equilibrium equations.

The two main results are that (a) the bulk viscosity approximation used in past
investigations is an adequate model for the influence of rotational relaxation when an
accurate temperature dependence of the bulk viscosity (derived herein) is used, and
(b) vibrational relaxation has a large destabilizing influence that has been overlooked
by previous investigations, with the de-stabilizing influence being pronounced in
boundary layers downstream of a blunt leading edge (both in wind-tunnel flows and
in free flight), and in boundary layers over the idealized sharp and thin flat plate in
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wind-tunnel flows. Only for the case of the idealized thin plate in free-flight conditions
does the influence of vibrational relaxation become weak, and slightly stabilizing for
second-mode instabilities, in agreement with the one previous investigation that
has considered thermochemical non-equilibrium. For practical geometries, having
measurable thickness and a leading edge, the effect of non-equilibrium is strong.
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